Pada Metode Newton-Raphson
memerlukan syarat wajib yaitu fungsi f(x) harus memiliki turunan f’(x).
Sehingga syarat wajib ini dianggap sulit karena tidak semua fungsi bisa dengan
mudah mencari turunannya. Oleh karena itu muncul ide dari yaitu mencari
persamaan yang ekivalen dengan rumus turunan fungsi. Ide ini lebih dikenal
dengan nama Metode Secant. Ide dari metode ini yaitu
menggunakan gradien garis yang melalui titik (x0, f(x0))
dan (x1, f(x1)). Perhatikan gambar dibawah ini.
Prosedur
Metode Secant :
Ambil dua titik awal, misal x0 dan x1. Ingat bahwa pengambilan titik awal tidak disyaratkan alias pengambilan secara sebarang. Setelah itu hitung x2 menggunakan rumus diatas. Kemudian pada iterasi selanjutnya ambil x1 dan x2 sebagai titik awal dan hitung x3. Kemudian ambil x2 dan x3 sebagai titik awal dan hitung x4. Begitu seterusnya sampai iterasi yang diingankan atau sampai mencapai error yang cukup kecil.
Ambil dua titik awal, misal x0 dan x1. Ingat bahwa pengambilan titik awal tidak disyaratkan alias pengambilan secara sebarang. Setelah itu hitung x2 menggunakan rumus diatas. Kemudian pada iterasi selanjutnya ambil x1 dan x2 sebagai titik awal dan hitung x3. Kemudian ambil x2 dan x3 sebagai titik awal dan hitung x4. Begitu seterusnya sampai iterasi yang diingankan atau sampai mencapai error yang cukup kecil.
Contoh :
Tentukan salah satu akar dari 4x3 – 15x2 + 17x – 6 = 0 menggunakan Metode Secant sampai 9 iterasi.
Penyelesaian :
f(x) = 4x3 – 15x2 + 17x – 6
iterasi 1 :
ambil x0 = -1 dan x1 = 3 (ngambil titik awal ini sebarang saja, tidak ada syarat apapun)
f(-1) = 4(-1)3 – 15(-1)2 + 17(-1) – 6 = -42
f(3) = 4(3)3 – 15(3)2 + 17(3) – 6 = 18
Tidak ada komentar:
Posting Komentar