mymath

Rabu, 29 Januari 2014

METODE FIX POINT (TITIK TETAP)

Metode Iterasi Titik tetap kadang-kadang dinamakan metode iterasi sederhana atau metode langsung atau metode substitusi beruntun. Kesederhanaan metode ini karena pembentukan prosedur iterasinya yang mudah dibentuk, yaitu kita ubah persamaan f (x) = 0 menjadi bentuk x = g(x), kemudian dibentuk menjadi prosedur iterasi,
Metode Titik Tetap adalah suatu metode pencarian akar suatu fungsi f(x) secara sederhana dengan menggunakan satu titik awal. Perlu diketahui bahwa fungsi f(x) yang ingin dicari hampiran akarnya harus konvergen. Misal x adalah Fixed Point (Titik Tetap) fungsi f(x) bila g(x) = x dan f(x) = 0.
Prosedur Metode Titik Tetap :
Misal f(x) adalah fungsi yang konvergen dengan f(x) = 0, maka untuk mencari nilai akarnya atau hampiran akarnya kita terlebih dahulu mengubah kedalam bentuk x = g(x). Kemudian tentukan nilai titik awal, misal x1. Setelah itu disubstitusikan titik awalnya ke persamaan g(x) sedemikian sehingga g(x1) = x2, setelah itu titik x2 yang diperoleh substitusikan lagi ke g(x) sedemikian sehingga g(x2) = x3. Jadi apabila ditulis iterasinya akan menjadi
x1 (penetuan titik awal)
x2 = g(x1) (iterasi pertama)
x3 = g(x2) (iterasi kedua)
.
.
xn = g(xn-1) (iterasi ke-n)

Iterasi ini akan berhenti jika x = g(x) dan f(x) = 0 atau sudah mencapai nilai error yang cukup kecil (|xn - xn-1| < Description: Description: \varepsilon).





PENYELESAIAN





1 komentar: